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Computer Solutions to Heat and Diffraction
Equations in High Energy Laser Windows
Volume |

1. INTRODUCTION

When a nonuniform high power laser beam traverses a nearly transparent
material ’medium, the 3mall amount of energy which is absorbed by the solid is
often sufficient to raise its temperature by an appreciable amount. Since this
heating is also nonuniform, it creates thermal stresses throughout the window
which causes distortion and defocusing in the transmitted light beam; this phenom-
enon is called thermal lensing. This degradation of beam energy has been recog-
nized as one of the principal failure modes in high-power laser windows,

In order to assess therinal lensing in an analytical manner, one must first
determine how the temperature is varying throughout the medium as a function of
time. This information must then be incorporated into a formalism which charac-
terizes an optical beam tfaversing a material medium experiencing stress

birefringence effects. From this, it now becomes possible to calculate how the

Received for publication 26 November 1976

1. Sparks, M, (1971) J. Appl. Phys. 42:5029; and, Jasperse, J.R., and
Gianino, P.D. (1972) J. Appl. Phys. 43:1686.
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transmitted beam will vary with time in the vicinity of the distant Gaussian focal
point, 2l

To quantify the effects of thermal lensing, an efficient computer program
package has been developed at AFCRL and programmed to run on a CDC6600
computer. The package has been written to handle an unpolarized, symmetric,
Gaussian-shaped beam, incident uniaxially on either a thin disc -- or annular-
shaped cylindrical window, which is assumed to be homogeneous and perfectly
antireflective coated, Three coupled programs make up the package. One,
called TEMP5, solves the full heat transport equation within the window for any
given set of initial and boundary conditions on each surface. Its output is fed into
the second program, called TIKIRK, which computes the intensity, or diffraction,
pattern of the transmitted beam in the far field, The third program, called
DISPLAY, has the capability of plotting the temperature and the intensity results
from the first two programs in a variety of ways.

The TEMPS heat program solves the partial differential heat equation by
utilizing a numerical integration technique called the Implicit Alternating-Differ-
ence (I, A.D.) method, in which all finite difference analogs of all derivatives are
correct to second order., The method employs a half increment shifted net bec.use
this allows the use of general boundary conditions., Being a fairly comprehensive
program, it allows rather general specifications of the initial conditions, as well
as different boundary conditions of the linear type on each surface, It is most
accurate when a large number of spatial and temporal points are employed in the
computation, The method is stable for all time increments which may be changed
under program control. Various parameters pertaining to the beam shape and
window geometry must be specified as input, along with the material's thermal and
optical parameters and its boﬁndary and initial conditions. The program computes
the nondimensional temperature rise at each grid point in the window as a function
of nondimensional time, as well as two aberration functions used by program
TIKIRK,

All of these results, along with the remaining material and configurational
parameters of the system, are then fed into the TIKIRK optical program. Here,
specially designed integration routines compute the Hankel transforms and similar
oscillatory-type integrals which evolve from the vector Kirchhoff diffraction theory.
2. Begx%%vv, B., Jasperse, J.R., and Gianino, P.D. (1972) Optics Commun.

Bendow,

B., and Gianino, P.D, (1972) AFCRL-72-0322, unpublished.
Bendow, B., and Gianino, P.D. (1973) J, of Electronic Mater, 2:87.
B., and Gianino, P.D. (1973) Appl. Optics 12:710.
Bendow, B., and Gianino, P.D. (1973) Appl. Phys. 2:1.
Gianino, P.D., and Bendow, B. (1973) Appl. Phys. 2:71.

Bendow,
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The output gives the time behavior of the transmitted laser beam!'s intensity in
the far field,

Program DISPLAY is a general purpose program which may be used to plot
any function of two variables in any one or all of three ways — contour map,
perspective view and multiple x-y plot. Since the temperature in the window and
the intensity in the far field can be regarded as being functions of two space vari-
ables (as will shortly be shown), these lend themselves quite readily to plotting
by this program. The third variable, time, is then considered to be a parameter,
as far as the two-dimensional displays are concerned. As mentioned above, this
program has the very desirable capability of a perspective plot. In this case, a
surface represencing temperature or intensity as a function of the two space

variables can be drawn, giving the appearance of being a three-dimensional plot,

2. PLAN

We have divided this report into two parts. Our objective in Volume I is to
give a brief introduction to the problem and to present the heat and diffraction
equations appropriate to the geometric, physical, boundary and initial conditions
imposed upon the problem, In this portion, we also define all of the parameters
associated with the beam and the window and describe the four common types of
boundary conditions expected to occur in the problem. Finally, we present in
graphical form the resilts of a model problem in which a typical laser beam is
incident on both a disc- and annular-shaped ZnSe window. These graphs show
various two- and three-dimensional plots of both temperature in the window and

intensity of the transmitted beam in space.

Volume II is a "user's manual." It describes the three computer programs in

detail, explaining how they function and how they are implemented. It enumerates
their constituent subroutines and subprograms, explains their functions and gives

Fortran listings in appendices. In addition, attachments are provided which give

typical detailed commands to initiate and run the programs in both the Intercom

and Batch modes of operation.

3. THE HEAT PROBLEM

3.1 The Heat Equation

Since the incident beam and, therefore, the temperature distribution in the
window have circular-cylindrical symmetry (there being no dependence on the
angular coordinate g), it will be sufficient to work with the two spatial coordinates




only, viz, r and z. The evaluation of the temperature at any point in this window
requires the solution of the heat conduction equation, with the source term added,
employing the boundary conditions at each surface and taking into account the

initial temperature distribution through the window's interior. The heat conduc-

tion equation in the r, z cylindrical coordinates is given as:

2

aT/ot =x vV, , T+Q/c,d ,

where
temperature
time
< radial coordinate
axial coordinate
density
specific heat at constant pressure
thermal diffusivity = K/cpd
thermal conductivity

volume heating source

(1)

[°c

[sec]

[em]

[cm]
[gm/cm’]
[J/gm-°C]
[cm?/sec)
[W/cm-°C]

[W/cm®]

v a/ar(ra/or) + 82022

[em™?)

The window has an axial thickness L and an outer radius a. When it is
annular-shaped, the inner radius is designated by r. However, rather than work
with the coordinates and quantities as defined above, we will find it more conven-
ient to deal with their dimensionless counterparts by normalizing to the outer

radius ""a". These normalized terms are:

p=rja

£ =z/a

radial coordinate (o < p < 1)
axial coordinate

py = rl/a = inner radius

P19 = (a - rl)/a = radial thickness

€19 = L/a = axial thickness

We choose the p, ¢ coordinate system such that its origin is at the center of the

sample. The window face through which the laser beam enters is located at

9} (=-L/2a)., The laser beam travels in the positive ¢ direction and exits at the

face given by §2 (= L/Za). This coordinate system and the geometrical quantities
defined above are depicted superimposed on the window in Figure 1.

12
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Figure 1. Normalized Window Coordinates. is the outer radius

(in cm)

a

3.2 The Heat Source Term

In general, the source term @ may be: a function of r and z (but not of time,
£ except that it may be "turned off"' at a particular time). However, it is most con-
venient to assume that it is given as the product of the bulk absorption coefficient
B and the laser beam power density I(r, z) at that point. Typically, I has dimen-

sions of W/cm2 and 3 in cm_l. The power density function is separable in the

i

GRS,

r, z coordinates, that is, I(r, z) = I(r)I{z). Under the usual assumption that g is

sufficiently small so that 8 times thickness <« 1 always, then I{z) = 1. It is also
3 assumed that the incident laser beam is Gaussian-shaped and axisymmetric with
f the window. Thus

pr—
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Kr,2z) = Ir) = Ip exp (-r2/2°2) : &)

where Ip is the peak power density of the incoming laser beam and ¢ is the beam
radius, that is, at a radial distance of 20 from beam center, the power density
reduces to e'ZI . By dividing o by the window radius a, the normalized beam

radius % is obtained. Then, Eq. (2) becomes in normalized coordinates:
2 2
I(p) = Ip exp (-p /20e) . (3)

The relationship between 04 28 defined here, and the beam-size parameter az,

introduced by Bendow and Gianino, 2 is given by:

o 1/add . (4)

The total power contained within the incoming laser beam (Pl) is related to
I(r) in the following way:

P, = ffl(r)dA =pr exp (-r2/202)27rr‘dr = 27r021p

with dA being the elemental surface area. Note that the integrals over the surface

o0
(o]

area cover all space. Solving for Ip gives:

2 or 2 2
Ip=P2/27rc = P,/2ma"c, . ) (6)

Utilizing Eq. (6) in Egs. (2) or (3) and multiplying by 8, we get the steady-state

volume heating source term as:

Q(r) [BPJZ /27r02] exp (—r2/202) ; (7

- (8P, /272" o) exp (0% /200) .




However, in most experimental situations it is more convenient to measure
transmitted power (Pt) rather than the incident laser power (Pl)’ Under the
assumption that BL <« 1, then these two quantities are related by:8

Pt/PI = 2n/(n2 +1) ,
n being the refractive index of the medium. Solving for Pl ¢
2
P, = Pt(n +1)/2n . (10)

In this work we have assurned that it will always be the quantity Pt that is known
initially and the P, will have to be computed via Eq. (10). Therefore, the com-
puter program has been written to accept Pt as input and to transform to Pﬂ
according to the above formula,

The program is also capable of handling a z-dependence of the source term Q.
This capability is discussed more fully in Section 11. TUnder this circumstance,
the assumption of fL « 1 may not be valid, necessitating a more accurate formula
for transmitted power Pt than that stated in Eq. (9).

3.3 The Boundary Condition Equation

As mentioned in Section 3,1, the window temperature distribution is also
governed by the boundary conditions (BC) on its four surfaces. The BC Equation
for the ith surface is of the form:9

1 8,

K(®T, /8p;) = g - h; T (11)
1 1

where Tg; is the temperature at the surface, h, is the surface's heat transfer
ex_ 0C] - is the total heat flux into the surface [W/cm ] and
f)/c’)pi is the directional derivative along the normal pointing outward from the ith
surface. The index i runs from 1 to 4. The inner and outer cylindrical surfaces

coefficient {[W/cm

located at r; and "a" are designated by the indices 1 and 2, respectively; whereas,

the plane window faces located at z = -L/2 and L./2 are designated by the indices 3
and 4, respectively. There will be an equation of type (11) for each surface of the
window, thereby allowing independent treatment of each boundary.

8. Weil, R, (1970)J. Appl. Phys 41:3012; and Bendow, B., Hordvik, A.,
L1pson H., and Skolnik, (”@72) AFCRL-72- 0404 unpubhshed p. 12.

9, Carslaw, H.S., and Jaeger, J.C. (1959) Conduction of Heat in Solids, 2nd
edition, Oxford Press, London, p. 19.
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The terms on the right-hand side of Eq. (11) refer to the total flux of energy
absorbed by the surface (gi) and the total flux emitted (hiT). Their difference is
equal to the net flux absorbed by the surface, given by K(BTSi/api). The term g,
in turn, has two contributors: the heat influx from the surrounding environment
whose ambient temperature is Ta and that from additional external heat sources
(Fi)' That is,

g =hT +F, . (12)

There are 4 common BC which typically characterize practically all of the

surfaces of interest, They are:

(BC1) Insulated Surface: Since no radiation can enter or leave the surface,
both g; and hi are set equal to zero.

(BC2) Given Heat Input: hi is set equal to zero so that there will be no heat
flow out of the surface. All of the heat influx from the external source originates
from F;, so that K(BTSi/Bpi) -l L

(BC3) No Thermal Constraints: Here, the surface is experiencing both an
influx and e’flux of heat radiation. In general, all of the terms in Egs. (11) and
(12) are present and are finite, although in the typical case Fi will usually be zero.
The heat outflow is represented by hiTs i in which TSi is varying. Thus, the net
flux absorbed is given typically by hi(T 4 Tq i)' The condition usually known as

Newton's Law9 occurs when Tsi >T, and F, = 0.

(BC4) Fixed Surface Temperature: To hold the surface temperature TSi fixed,
hi must be set equal to a large value in order that the surface may be an efficient
dissipator of any additional heat reaching it. Furthermore, the temperature of the
ambient environment in the immediate vicinity of the surface must be the same as
that of the surface (that is, Ta = Tsi) so that there will be no net exchange of energy
between the two regions, Therefore, if we set Fi = 0, then g = hiTa = hiTSi and
there is no net absorbed flux.

The information on all of the parameters pertaining to these four BC is tab-
ulated in Table 1. Note that all of the BC of practical interest can be represented
by an appropriate choice of g and hi' This will allow the resulting computer pro-
gram to be very flexible,

For the case in which the window is a full disc, then g, and h1 (which pertain
to the nonexistent inner cylindrical surface) are set equal to zero,
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Table 1. Information on All the Parameters (g.l, hi’ Fi’ Ta’ Tg i) for the Boundary
Condition (BC) Equation

BC g; hi Fi Ta Tsi Net Flux Absorbed

1 0 0 0 - varies

2 Fi 0 finite - varies Fi

3 h,T_+F; finite finite fixed varies h(T_-Ts,)

4 hiTSi large 0 Ta=T ] fixed 0

4. THE FAR-FIELD INTENSITY PATTERN

Originally, the TEMPS5 (heat) program was written to solve the heat and BC
equations when they were in a nondimensional form. Consequently, its results
(temperatures throughout the window) would be expressed in nondimensional form.
On the other hand, the TIKIRK (optical) program was designed to work with actual
(that is, dimensioned) quantities. To rectify this discrepancy, the TIKIRK pro-
gram has been written to accept all of the normalized output from TEMPS and to
dimensionalize it accordingly before using it. Thus, whenever these two programs
are to be used together, only the normalized data from the TEMP5 program can
be utilized, We have already indicated the transformations between the spatial
coordinates r, z and p, . The real time t and real temperature T are related to

their nondimensional counterparts r and w, respectively, via:
7 =wt/a’ (13)
w = T/AT (14)
where
AT, = BPI /KT, (15)

Before the temperature output of TEMP5 — in the form of w(p, ¢, ) — is fed
into TIKIRK, it is integrated over the thickness of the window to obtain:

P
Fl(p, 7 =f wip, ¢, 7V d¢ .
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Another function, F2, is obtained from F1 via:

P,
F2(p, 1) = p-2 fFl(p, pdp . ‘ (17)
)

The dimensionless functions F1 and F2 can be converted to real time t by means

of Eq. (13). Knowing these two F-functions, one can determine the time-dependent
aberration functions & ¢ associated with the p- and g- polarized waves.\\4 These
& -functions contain all of the material properties of the window and characterize

its thermal stresses as functions of time. They are of the form:

8Y(p, 1) = a AT [s‘{ Fl(p, t) + 4 S} F2(p, t)] L e (18)

The S'jY are the thermal lensing parameters, defined as:4

= dn/aT + a0’ [(1 = 1) pyp - vPyy) /24T (L +p)a - 1) (19)
s = -sf - an’(1+v)py, - pyp)/8 (20)
s¢ = dn/ar +En3[p11 -2up,l/2+ A1+ - 1), (21)

where dn/dT is the temperature derivative of refractive index, a is the thermal

expansion coefficient, vy is Poisson's ratio and the pij are the Pockels elastooptic
£

coefficients. ~ These S! must be calculated in advance and read in as input since

the program does not compute them.

*The terms containing the elastooptic coefficients in Egs. (19) through (21) repre-

sent the "isotropic approximation" commonly utilized in the literature for crystal-
line windows, but which is, strictly speaking, valid only for amorphous solids.
When the effects of crystallinity are taken into account, the forms of the above
elastooptic terms can change significantly. For example, F. Horrigan of
Raytheon Corp. and, later, J. Marburger and M. Flannery of the University of
Southern California, have considered the case of a single crystal window whose
face is a {111} plane and communieated their soraewhat different results to us.
The elastooptic terms based on Horrigan's work have been reported in B, Bendow,
P. Gianino, Y. Tsay and S. Mitra, Appl. Opt. 13, 2382 (1974), [Eq. (33)]. The
corresponding terius based on the Maibui ger Flannery aualysis bave Ucewn
reported in B. Bendow and P. Gianino, Appl. Opt. 14, 277 (1975), [Eq. (3)].

The results for the effective p::'s to be utilized for polycrystalline media are
given by M, Flannery and J. Marburger, Proc. of Fifth Conf, on IR Laser Win-
dow Materials, C.R. Andrews and C. L. Strecker, Editors, ARPA, Arlington,
Virginia (1976), p. 781.
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Since the SJ?' have dimensions of (OC)-l, then. thelqﬂ will be expressed in
cm. .

Previously, g we determined the transmitted intensity at a field point in
space for an unpolarized beam with an axisymmetric Gaussian distribution inci-
dent on the window. The field point in space is specified by the cylindrical coord-
inates X, p', in which X is the distance from the window's center measured along
an axis orthogonal to the plane of the window and through its center, while p!' is
the perpendicular radial distance from this line to the field point. ‘The Gaussian
focal distance, that is, the axial distance from the window's center to the Gaussian
focal point, is given by Xo' These coordinates are shown in Figure 2. Since the
spatial intensity pattern is circularly symmetrical about this axial line, there is
no dependence on the cylindrical angular coordinate.

FIELD POINT (X,p'}

WINDOW

e e A, s

LASER
BEAM

Figure 2. Cylindrical Coordinates for the Field Point
in Space., The origin is at the center of the window.
X0 is the Gaussian focal distance
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Sometimes, rather than using the dimensioned coordinates X and p', it is
advantageous to employ the nondimensional generalized coordinates u and v in the
calculation of the intensity, These coordinates are measured from the Gaussian

focal point and are closely related to the "optical coordinates' of Born and Wolf.10 i

Specifically,

1 -1)

u=ka2(X; - X v=kap'/X , (22)

where k is the wave number 27/), and, X is the wavelength, (At the Gaussian
focus both u and v vanish, by definition, so X = Xo, p' = 0). Specifically, the
intensity at a given point u, v in the far field at any time t relative to the intensity

at the Gaussian focus at zero time is given by:z_6

1
Iu, v, ) = 203(1 - exp (-a2) 2 ’lf Do dp! 2 . 1 oty dp. 2 (23)
(o]

The Functions within the brace in Eq. (23), which are to be integrated over the

window's face, are defined as follows:

£, (P, ) = exp (-arzp2 - iup2/2) , (24)
fx(p, v,t) =p Jo(pv) exp (ikaol) - fz(p, v,t) , (25)
fy(p, v,t) = p Jo(pv) exp (ika?) + £,0,v,8) (26)
£ o, v, t) = v 3 (pv) [exp (k&) - exp (ika®) (27)

where J and J1 are the zero- and first-order Bessel functions of the first kind,

respectively.
Usually, however, it is desirable to express the above intensity in terms of
the dimensioned coordinates X, p'. In that case, the intensity is determined by:

(X, o', t) = I'(u, v, t) * x(z)/(x2 o gkl . (28)

It will be the objective of the TIKIRK program to compute Eqs. (23) through (28).

10. Born, M., and Wolf, E. (1964) Principles of Optics, 2nd (revised) edition,
Macmillan Co., New York, p. 437.
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Before pursuing the solutions to the heat and diffraction problems, it would
serve our convenience if we paused to classify the input parameters into categor-
ies which describe the window's geometry, its material composition, surface

characteristics and the beam properties:
Geometrical Parameters: a, L, ry

Material Parameters: n, 8,K, ¢, d, SJ?

p
Surface Parameters: g, h;

Beam Parameters: o, P, A

5. THE PROGRAMMED FORMS OF THE HEAT AND BC EQUATIONS

5.1 Nondimensional Form

The heat and BC equations can be cast into a nondimensional form by dividing
Eq. (1) by KATC/a2 and Eq. (11) by KATc/a, obtaining:

2

e Wt (202 )" exp (-p% /202) (29)

dw/dt = v

awsi/a(pi/a) = ag,/KAT, - (ah;/K) A |3 (30)

in which use has been made of the normalized distances, plus Egs. (13), (14), (15),
and (10), Rewriting these equations in terms of the notation used in the computer

program (that is, the quantities printed out), there results:

DU/A(TAD) = Vippoy (zpmy U+ A exp (- (RHO)? /2(SIG)?}

dUg, /on; = GL() - HI() - USi

where

vaHO)’ (ZED) = (RHO)™! 8/3(RHO) {(RHO) 8/3(RHO)} + 2/8(ZED)?

The integration on RHO proceeds from RHO1 to RHO12, while that on ZED goes
from -| ZED1| to | ZED1],




Upon comparing Eqs. (31) and (32) with (29) and (30), respectively, one can

make the following associations:

U = w

TAU =17

RHO = op

ZED =¢

RHOL = p,

RHOL12 = p,, (33)
ZED1 = ¢,

A = 1/20°

SIG = 0,

Gl() = ag/KAT_
HI() = ahi/K

n; = pi/a and refers to the normalized coordinates p or ¢, depending upon the
surface being considered. We emphasize, once again, that the computer variable
quantities on the left of Eqs. (33) are those printed out by the program, while
those quantities on the right represent the interpretations that are to be given to
the computer variables. Note that all of these quantities are normalized so as to
be dimensionless, The interpretation delineated in Eq. (33) is mandatory when
the TEMP5 program is to be used as a predecessor to the TIKIRK program or
when temperature plots are to be made,

A perusal of the right hand sides of Egs. (33) shows that one must know all of
the geometrical, material, surface and beam parameters listed in the previous
section (except SY and ) in order to specify completely the computer variables on
the left sides of Eqgs. (33). For the case of no volume source, the last term in
the heat equation vanishes, obviating the need for SIG and A, (A control to bypass
this term is available in the program.)

5.2 A Dimensioned Form

For those situations in which one wants only the numerical results of the real
temperature distribution throughout the window as a function of real space and time,
but not the diffracted laser beam intensity, a different arrangement of the heat and
BC equations can be formulated, resulting in a more convenient (dimensioned)
interpretation of the computer variables, Here, Eq. (1) is divided by x and Eq.
(11) by K, obtaining:




.2 2 2, 2
aT /a1 = L= T + (AT /207) exp (-r /26%)

BTsi/Bpi = g;/K - (h;/K) TSi S s (35)
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